Exercise 25

Prove the statement using the ε, δ definition of a limit.

$$
\lim _{x \rightarrow 0} x^{2}=0
$$

Solution

According to Definition 2, proving this limit is logically equivalent to proving that

$$
\text { if } \quad|x-0|<\delta \quad \text { then } \quad\left|x^{2}-0\right|<\varepsilon
$$

for all positive ε. Start by working backwards, looking for a number δ that's greater than $|x|$.

$$
\begin{gathered}
\left|x^{2}-0\right|<\varepsilon \\
\left|x^{2}\right|<\varepsilon \\
x^{2}<\varepsilon \\
\sqrt{x^{2}}<\sqrt{\varepsilon} \\
|x|<\sqrt{\varepsilon}
\end{gathered}
$$

Choose $\delta=\sqrt{\varepsilon}$. Now, assuming that $|x|<\delta$,

$$
\begin{aligned}
\left|x^{2}-0\right| & =\left|x^{2}\right| \\
& =|x||x| \\
< & (\delta)(\delta) \\
& =(\sqrt{\varepsilon})(\sqrt{\varepsilon}) \\
& =\varepsilon .
\end{aligned}
$$

Therefore, by the precise definition of a limit,

$$
\lim _{x \rightarrow 0} x^{2}=0
$$

